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We describe a formalism suitable for studying the ultrafast dynamics and nonadiabatic effects associated
with propagation of a single electron injected into an empty band. Within the band the electron is coupled to
vibrational or electronic excitations that can be modeled by bosons. The formalism is based on the application
of cumulant expansion to calculations of diagonal single particle propagators that are used in the interpretations
of time resolved measurements of the surface electronic structure. Second and fourth order cumulants which
arise from linear coupling to bosonic excitations and give leading contributions to the renormalization of
propagators are explicitly calculated in the real time domain and their properties analyzed. This approach
enables the assessment of transient effects and energy transfer associated with nonadiabatic response of the
system to promotion of electrons into unoccupied bands, as well as of higher order corrections to the lifetimes
and energy shifts of the initial electronic states that in the adiabatic regime are obtained from Fermi’s golden
rule approach or its improvements such as the GW approximation. In the form presented the formalism is
particularly suitable for studying the non-Markovian evolution and ultrafast decoherence of electronic states
encountered in electron spectroscopies of quasi-two-dimensional bands on metal surfaces whose descriptions
are inaccessible to the approaches based on the adiabatic hypothesis. The fast convergence of the results
obtained by this procedure is demonstrated for a simple model system relevant to surface problems. On the
basis of this and some general properties of cumulants it is argued that in the majority of surface problems
involving electron-boson interactions the ultrafast dynamics of quasiparticles is accurately described by the
second order cumulant, which can be calculated with the effort not exceeding those encountered in the standard
GW approximation calculations.
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I. INTRODUCTION

A number of experimental techniques have been designed
and employed to study the electronic properties of surfaces.
The properties of occupied electronic states have been exten-
sively investigated by the various electron spectroscopies,
among which photoemission �PE� spectroscopy has been the
most widely used. In the past two decades the investigations
of unoccupied electronic states localized at surfaces have
been successfully carried out using inverse photoemission1

�IPE� and more recently two-photon photoemission �2PPE�
spectroscopy.2,3 Particularly interesting in this context are the
states from the bands localized at surfaces, typically the im-
age potential bands on low index crystal faces of fcc and bcc
metals or the bands arising in quantum well �QW� structures.
These states are probed by spectroscopies in which the elec-
trons are injected into the surface bands either from the out-
side �in IPE�, or from the initially occupied states of the
system �in 2PPE�. Common to both spectroscopies is that
promotion of an electron into an unoccupied state above the
Fermi level EF acts as a sudden perturbation to the local
environment. In IPE the perturbation is brought about by
interactions of the promoted electron with all other charges
�electrons and ions� in the system. On the other hand, in the
first step of 2PPE the electron that is photoexcited into an
unoccupied state above EF, and the hole that is left in a state
below EF, represent a dipole which as a whole interacts with
and perturbs the charges in the otherwise neutral but excited

system. In both cases the sudden switching on of the inter-
action gives rise to nonadiabatic effects in the response of the
system to transient perturbations and this strongly affects the
propagation of promoted/excited quasiparticles �electrons or
holes� throughout the duration of the interaction�s�.

The main effect of the interaction of quasiparticles with
the charge density fluctuations and impurities in the system
is the exchange of energy and momentum that gives rise to
the renormalization and decay of the states in which quasi-
particles were initially prepared. Thereby the coupling of
quasiparticles to electronic and vibrational excitations ap-
pears as a source of decoherence and dephasing phenomena
because the coherence of the initial particle state�s� and wave
function�s� is lost in the course of interaction. The time
scales characterizing these processes depend on the band
structure, the type of interaction �interactions with ions or
other electrons� and the response properties of the system,
and typically occur in the femtosecond range. Hence, one of
the major motivations for implementation of the time-
resolved �TR� spectroscopies in the investigations of surface
electronic structure has been to gain insight in the decoher-
ence processes on the ultra short time scale.

Systematic application of PE, IPE, and 2PPE spec-
troscopies to the investigations of surfaces has resulted in the
accumulation of information on the lineshapes and lifetimes
of quasiparticle states in the bands of image potential.1–3

Theoretical approaches employed to interpret the measured
data �for a review see Ref. 4, and references therein� have
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been based on the adiabatic hypothesis in that the response
of the system to the introduction of probe charges in the act
of measurement was assumed to be adiabatic rather than
transient. This leads to the description of quasiparticle dy-
namics in terms of lifetimes obtained from Fermi’s golden
rule or its improvements based on the GW approximation.5

However, this approach fails if the act of measurement pro-
ceeds on the time scale that is comparable to or shorter than
the characteristic response time of the system,6 which is the
case in current TR 2PPE experiments. Therefore, in such
physical situations one should go beyond the adiabatic hy-
pothesis and resort to methods that enable the study of tem-
poral evolution of quasiparticles over the entire duration of
interaction with the excitations in the system, i.e., both on
the early and long time scale.

In the present work we develop a general formalism for
description of the temporal evolution of electrons upon their
injection into a surface localized band in the course of a
spectroscopic measurement. The electron dynamics in the
band is affected by the coupling to excitations of the sub-
strate. These excitations, which constitute the heatbath of the
system, are modeled by bosons that may describe vibrational
excitations �phonons� or electronic excitations �low-energy
electron-hole pairs, plasmons, etc.�. In this approach we as-
sess the evolution of a quasiparticle initial state from the
corresponding quasiparticle propagator calculated in the real
time domain. This restricts the present study only to intrinsic
effects that give rise to quasiparticle decay and decoherence
independent of the mechanism of particle promotion into the
band. In Sec. II we introduce the model from which we cal-
culate the quasiparticle propagators that contain the desired
information on quasiparticle evolution throughout the entire
interaction interval. The explicit forms of these propagators
represent essential inputs in quantum calculations of the time
resolved 2PPE and SHG yields7 but so far their treatment has
been only phenomenological or heuristic. We describe in de-
tail the method of calculation of the propagators that is based
on cumulant expansion and point out the criteria for its fast
convergence that enables controlled approximate evaluations
of the propagators. In Sec. III we carry out the evaluation of
dominant contributions to the cumulant series and describe
their properties on the short and long time scales. To facili-
tate applications of the developed formalism to the studies of
electronic interactions at surfaces we explicitly establish a
mapping of the problem of electron propagation in surface
bands onto the model of quasiparticle-boson interactions. In
Sec. IV we demonstrate a simple application of this method
to calculate the propagator of a single electron in a one-
dimensional �1D� band in which it is coupled to bosonized
1D electron density fluctuations described by the Tomonaga
model.8 This example illustrates all the salient characteristics
of the intrinsic dynamical phenomena that may be encoun-
tered in the ultrafast spectroscopy of electronic states at sur-
faces and identifies the time scale at which the adiabatic
description based on lifetimes derived from Fermi’s golden
rulelike approaches breaks down. We also show on this ex-
ample that the electron propagator expressed in terms of sec-
ond order cumulant accurately describes the quasiparticle ul-
trafast dynamics for a broad range of initial conditions and
that this feature is a general characteristic of similar interact-

ing systems described by similar sets of parameters, irrespec-
tive of the geometry and dimensionality of the problem. On
the basis of this and the general structure of cumulants we
argue that the dynamics of a large class of interacting
electron-boson systems can be reliably described by the qua-
siparticle propagators based on the second order cumulant
approximation. In the concluding Sec. V we briefly summa-
rize the main results of the present paper and point out po-
tential applications of the described approach. Some aspects
of the developed formalism have been already employed in a
recent study of decoherence effects in the intermediate states
of 2PPE from surface bands.6

II. MODEL DESCRIPTION OF SINGLE PARTICLE
PROPAGATION IN A SURFACE BAND

In this section we first introduce the model Hamiltonian
for description of the dynamics of particles in quasi-two-
dimensional �Q2D� surface bands. After this we describe a
method for calculating the propagator of a single quasiparti-
cle whose dynamics is governed by the thus introduced
Hamiltonian. Although the derived expressions are directly
applicable to Q2D systems, typically to electron dynamics
in image potential or quantum well bands on surfaces, the
structure of the obtained results and their implications are
general and not restricted by the dimensionality of the
problem.

The quantum numbers that describe unperturbed motion
of particles in the surface bands are the 2D Bloch momentum
�K parallel to the surface and the band index l. In the case of
QW states l denotes the number associated with the quanti-
zation of motion in the confining potential. The Hamiltonian
describing unperturbed particle motion in Q2D bands will be
denoted by H0

p. The excitations in the system constituting its
heatbath will be modeled by bosonic excitations character-
ized by a parallel to the surface 2D wave vector Q and fre-
quency �Q, and the corresponding unperturbed boson Hamil-
tonian will be denoted by H0

b. The model Hamiltonian of the
interacting system is then written in the form

H = H0 + V = H0
p + H0

b + V , �1�

where V is the interaction that describes the intraband and
interband scattering of the particle caused by emission and
absorption of bosons. We express H0

p and H0
b in the second

quantization form as

H0
p = �

K,l
�K,lcK,l

† cK,l, H0
b = �

Q
��QaQ

† aQ, �2�

where �K,l is the particle energy in the lth band, and cK,l
† and

cK,l �aQ
† and aQ� are the particle �boson excitation� creation

and annihilation operators, respectively. The interaction aris-
ing from the coupling of the particle density to excitations of
the boson field is described by

V = �
K,Q,l�,l

VK+Q,K
l�,l cK+Q,l�

† cK,l�aQ + a−Q
† � , �3�

where VK+Q,K
l�,l is the appropriate scattering matrix element

that contains the coupling constant � as a multiplicative fac-
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tor. Here we have restricted the particle-boson interaction
only to linear coupling because this gives a dominant contri-
bution to the scattering amplitudes.9–11

The evolution of a particle injected into the system, where
its motion is governed by the full Hamiltonian �1�, can be
assessed directly in the time domain by inspecting temporal
behavior of the diagonal one-particle propagators12,13

Gl,l�K,K,t� = Gl�K,t� = − i�0�T�cK,l�t�cK,l
† �0���0� . �4�

Here T denotes the time ordering operator, �0� is the initial
state or ensemble distribution of the system with empty lth
surface band into which the particle is injected at instant t
=0 with initial momentum �K and energy �K,l, and cK,l

† �t�
and cK,l�t� are expressed in the Heisenberg picture. For the
sake of simplicity we shall first assume only the intraband
transitions l= l� induced by the particle coupling to bosons
and postpone the problem of interband transitions till the end
of Sec. III. Hence, the index l will be omitted from subse-
quent expressions and again restored in Sec. III where the
effect of interband transitions is discussed.

In the following we shall consider motion of a single elec-
tron in the initially unoccupied band. The assumption of a
single particle considerably simplifies calculations of the ex-
pectation values or statistical averages in Eq. �4� because in
this case we have

H�0� = E0
b�0�, H0

p�K� = �K�K� , �5�

where E0
b is the initial energy of the unperturbed boson field

and �K�=cK
† �0�. This yields �from now on �=1�:

G�K,t� = − i�K�exp�− iHt��K�eiE0
bt��t�

= − ie−i�Kt�K�UI�t��K���t� , �6�

where UI�t� is the evolution operator in the interaction pic-
ture. A convenient method for calculating the expectation
values or statistical averages of generalized exponential op-
erators, of which UI�t� is a special case, is based on cumulant
expansion.14 Applying cumulant expansion to the single par-
ticle propagator �6� we find that it can be written in a com-
pact form15–20

G�K,t� = G0�K,t�exp�C�K,t�� . �7�

Here the unperturbed retarded single electron propagator or
Green’s function is given by

G0�K,t� = − ie−i�Kt��t� , �8�

and the exponent in Eq. �7� is expressed as a sum of cumu-
lants

C�K,t� = �
n=1

�

Cn�K,t� . �9�

Cn�K , t� denotes the nth order cumulant that is proportional
to the nth power of the coupling constant �:

Cn�K,t� =
�− i�n

n!
	

0

t

dtn ¯ 	
0

t

dt2	
0

t

dt1

	�K�T�VI�tn� ¯ VI�t2�VI�t1���K�c

= �− i�n	
0

t

dtn ¯ 	
0

t3

dt2	
0

t2

dt1

	�K�VI�tn� ¯ VI�t2�VI�t1��K�c, �10�

where the subscript c in �K�¯ �K�c denotes the cumulant
average over the state �K�. The basic property of a cumulant
average is that it is nonvanishing if the operators inside the
average are statistically connected or correlated.14 To calcu-
late the cumulant �10� one takes all different nth order �in ��
connected diagrams arising from the correlation function
�K�T�VI�tn�¯VI�t1���K� by applying to it Wick’s theorem,
and subtracts from this result all the nth order clusters of
unlinked, i.e., uncorrelated diagrams that are generated by
cumulant averaging �see Ref. 14 and below�. Note here that
the average in Eq. �6�, and thereby also in Eq. �10�, is taken
over the singly excited electronic state of the system, viz.
�K�, and this always leaves one electron line in the interme-
diate states of each diagram. By contrast, cumulant averages
over the ground state of an electron system produce linked
cluster diagrams of perturbation theory that contain only
closed electron loops.

Owing to the general characteristics of the particle-boson
field interaction �3� the odd order averages, and thereby also
the odd order cumulants in Eq. �9� vanish, and the even ones
can be readily calculated up to the fourth order in the cou-
pling constant. Hence, for the present system the first nonva-
nishing cumulant average is

�VI�t2�VI�t1��c = �VI�t2�VI�t1�� − �VI�t2���VI�t1��

= �VI�t2�VI�t1�� , �11�

and a straightforward evaluation of Eq. �10� for n=2
yields18–24

C2�K,t� = − i�
Q

�VK,K+Q�2	
0

t

dt2	
0

t2

dt1

	DQ�t2 − t1�ei��K−�K+Q��t2−t1�, �12�

where the unperturbed boson propagator is given by

DQ�t2 − t1� = − i��1 + nQ�e−i�Q�t2−t1� + nQei�Q�t2−t1�� . �13�

Here �Q=�−Q and nQ=n−Q is the Bose-Einstein distribution
of bosons at the temperature Ts, and hence DQ�t�=D−Q�t�.
The second order cumulant �12� has a diagrammatic repre-
sentation shown in Fig. 1�a�.

As was shown earlier,25,26 and will be also demonstrated
below, the long time limit of C2�K , t� defined by expression
�12� encompasses three types of fundamental contributions
which determine asymptotic temporal behavior16,18,19 of the
full propagator �7� and therefore make connection with the
earlier calculated lifetimes and lineshapes of quasiparticle
states. These are �i� a pure imaginary term −i
K

�2�t, which
gives second order contribution to the renormalization of en-
ergy of the initial electron state �K� �the so-called level re-
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laxation shift�, �ii� a real term −�K
�2�t in which �K

�2� has the
appearance of Fermi’s golden rule expression for the transi-
tion rate per unit time that describes single electron scatter-
ing by bosons, and �iii� a term wK

�2��t� that is a more compli-
cated function of t, which saturates at a finite value wK

�2� as
t→� and hence yields second order contribution to the ex-
ponent of the Debye-Waller factor exp�−wK� that describes
the weight of the elastic line in the quasiparticle spectrum.
On the other hand, as will be also shown below, the short
time limit of C2�K , t� exhibits a completely different behav-
ior which necessitates a preasymptotic treatment of the qua-
siparticle evolution.

The leading corrections to the fundamental contribution
C2�K , t�, that arise from correlations between successive

electron interactions with bosons, are obtained from the
fourth order cumulant. The latter is calculated from the cu-
mulant average

�VI�t4�VI�t3�VI�t2�VI�t1��c = �VI�t4�VI�t3�VI�t2�VI�t1��

− �VI�t4�VI�t3���VI�t2�VI�t1��

− �VI�t4�VI�t1���VI�t3�VI�t2��

− �VI�t4�VI�t2���VI�t3�VI�t1�� .

�14�

The correlation function �VI�t4�VI�t3�VI�t2�VI�t1�� upon sub-
stitution into Eq. �10� produces three different contributions
or diagrams,19 each of which contains two boson propaga-
tors. The diagram with successive noncrossing boson lines
spanned across the intervals �t4− t3� and �t2− t1� is exactly
canceled by the second term on the right-hand side �RHS� of
Eq. �14�, and the remaining expressions can be cast into the
form which encompasses two contributions18

C4�K,t� = C4
dir�K,t� + C4

xc�K,t� . �15�

Here both C4
dir�K , t� and C4

xc�K , t� are expressed as a differ-
ence of correlated and uncorrelated terms corresponding to
the same physical process �correlated and uncorrelated in the
sense of connected and disconnected as discussed after Eq.
�10��. The correlated terms of these contributions have dia-
grammatic representations shown in Figs. 1�b� and 1�c�.
Thus, the direct �dir� or Hartree-Fock-like contribution deriv-
ing from Fig. 1�b� takes the form

C4
dir�K,t� = − �

Q1

�
Q2

	
0

t

dt4	
0

t4

dt3	
0

t3

dt2	
0

t2

dt1

	DQ1
�t4 − t1�DQ2

�t3 − t2�
�VK,K+Q1
�2

	exp�i�K�t4 − t1� − i�K+Q1
�t4 − t3��

	�VK+Q1,K+Q1+Q2
�2

	exp�− i�K+Q1+Q2
�t3 − t2� − i�K+Q1

�t2 − t1��

− �VK,K+Q1
�2 exp�i��K − �K+Q1

��t4 − t1��

	�VK,K+Q2
�2 exp�i��K − �K+Q2

��t3 − t2��� . �16�

The corresponding exchange �xc� term deriving from Fig.
1�c� takes the form

C4
xc�K,t� = − �

Q1

�
Q2

	
0

t

dt4	
0

t4

dt3	
0

t3

dt2	
0

t2

dt1DQ1
�t3 − t1�DQ2

�t4 − t2�

	
VK,K+Q1
VK+Q1,K+Q1+Q2

VK,K+Q2

* VK+Q2,K+Q1+Q2

*

	exp�i�K�t4 − t1� − i�K+Q1
�t2 − t1� − i�K+Q1+Q2

�t3 − t2� − i�K+Q2
�t4 − t3��

− �VK,K+Q1
�2 exp�i��K − �K+Q1

��t3 − t1���VK,K+Q2
�2 exp�i��K − �K+Q2

��t4 − t2��� . �17�

FIG. 1. �Color online� �a� Diagram representing the second or-
der cumulant C2�K , t� given by Eq. �12�. Full and dashed lines
represent the particle and boson propagators, respectively, and full
dots denote the interaction matrix elements. Diagrams �b� and �c�
represent the correlated parts of the direct contribution �Eq. �16��
and exchange contribution �Eq. �17�� to the fourth order cumulant,
respectively.
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It will be shown in the next section that in the long time limit
also C4�K , t� exhibits a behavior similar to that of C2�K , t�,
but determined by the corresponding 
K

�4�, �K
�4�, and wK

�4� that
are of the fourth order in the coupling constant �.

Inspection of expressions �16� and �17� shows that in the
presence of translational invariance that applies to the energy
differences

�K+Q+P − �K+Q ↔ �K+P − �K, �18�

and to the interaction matrix elements

VK+Q+P,K+Q ↔ VK+P,K, �19�

both expressions �16� and �17� turn to zero. These invari-
ances are characteristic of the absence of correlations be-
tween successive boson emission and reabsorption events.
Hence, in the complete absence of such correlations, as is the
case with boson fields perturbed by classical time dependent
potentials, the cumulant series in the exponent of expression
�7� reduces to a single term given by expression �12� in
which VK,K+Q→VQ and �K+Q→�K. This exactly solvable
limit is known as the forced oscillator model.16,19,27,28

For the model system outlined in this section the higher
order cumulants Cn�4�K , t� give correlation corrections to
the fundamental uncorrelated processes described by the
powers of second order cumulant C2�K , t�. The magnitudes
of the corrections given by C4�K , t� and higher order cumu-
lants depend on the characteristic parameters describing the
unperturbed subsystems of the particle and boson field �i.e.,
dispersions of �K and �Q�, and the strength of the interaction
V. Higher order cumulants that describe higher order corre-
lations are proportional to higher powers of V. Hence, their
smallness depends on a tradeoff between the magnitude of
higher powers of V and the effects of higher order correla-
tions. Provided the correlations are small the cumulant series
in the exponent of Eq. �7� converges very fast.14 However, as
the interplay between the higher powers of V and higher
order correlations is generally system specific, the smallness
of C4�K , t� relative to C2�K , t� must be explicitly estimated
for a concrete choice of parameters characterizing the studied
system. This is illustrated on a simple example in Sec. IV for
realistic coupling strength and correlation effects brought
about by the successive energy transfer between the moving
particle and the excitations in the system. Therefore, in the
limit in which relations �18� and �19� are satisfied to a good
approximation to yield �C2�K , t��
 �C4�K , t��, the cumulant
series in Eq. �9� is, owing to general theorems on
cumulants,14 accurately represented by C�K , t�=C2�K , t�.
This has also been verified in situations in which the cumu-
lant and exact numerical solutions can be compared.9,50

Some formal aspects of the present problem bear resem-
blance to the polaron problem29 �single electron propagating
in a crystal band and interacting with optical phonons for
which �Q=�0=const� when the sudden switching on of the
interaction is replaced by an adiabatic one. Under the latter
boundary conditions the transient effects can be neglected
and the electron propagators and the corresponding spectral

densities are readily calculated by resorting to a standard
diagrammatic technique directly in the energy instead of the
time representation.19,30–32

III. CALCULATION OF THE SINGLE
PARTICLE PROPAGATOR

A. Second order cumulant

In this section we derive explicit expressions for the
renormalized quasiparticle propagators and analyze their
properties in the limit of zero temperature of the heatbath,
Ts=0. Their generalizations to a finite temperature are
straightforward albeit a bit tedious to write out explicitly in
the case of higher order cumulants. A prescription as how to
obtain a general expression for the second order cumulant at
nonzero Ts is given at the end of this subsection.

Substituting expression �13� into Eq. �12� we obtain ex-
pressions for the real and imaginary parts of the second order
cumulant that give fundamental contributions to the renor-
malization of electron propagator

C2�K,t� = Re C2�K,t� + i Im C2�K,t�

= − �
Q

�VK,K+Q�2
1 − cos���K − �K+Q − �Q�t�

��K − �K+Q − �Q�2

− i�
Q

�VK,K+Q�2

��K − �K+Q − �Q�

	�t −
sin���K − �K+Q − �Q�t�

��K − �K+Q − �Q� 
 , �20�

where Re and Im stand for the real and imaginary parts of the
expression, respectively. The behavior of C2�K , t� in the
early time limit t→0 is readily estimated in the physical
situation typified by the presence of an upper cutoff in the
summation �integration� over the boson momenta Q. Such a
cutoff is imposed by the physics of the problem and may
arise from the form of the interaction matrix elements
VK,K+Q, the upper electron band edge or the Brillouin zone
boundary for the wavevector of boson excitations, etc.33 In
this case we have

lim
t→0

C2�K,t� → −
t2

2!�Q �VK,K+Q�2 − i
t3

3!�Q �VK,K+Q�2

	��K − �K+Q − �Q� + O�t4� . �21�

Thus, the earliest decay of the quasiparticle state obtained
from Eq. �7� in which C�K , t� is approximated by Eq. �20� is
Gaussian-like, i.e., exp�−t2 /2�2�, where �−2=�Q�VK,K+Q�2.
This decay is a faster process than the early phase relaxation
of the initial state because the latter process is governed by
the imaginary term on the RHS of Eq. �21� that is �t3 and
hence smaller for t→0.

In the opposite limit t→� we can distinguish three types
of terms which give dominant contribution to C2�K , t�. The
contribution responsible for the quasiparticle decay is ob-
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tained by substituting limt→��1−cos��t�� /�2=�����t,
where �= ��K−�K+Q−�Q�, into the real part of expression
on the RHS of Eq. �20�. Hence, in the long time limit
Re C2�K , t� is linear in t, i.e., expressed as a product of the
duration of the interaction t and the decay rate �K

�2� given by
the expression

�K
�2� = ��

Q
�VK,K+Q�2���K − �K+Q − �Q� . �22�

The component of the imaginary term on the RHS of Eq.
�20� that is also linear in t has the appearance of second order
correction in the Rayleigh-Schrödinger �RS� expansion for
the perturbed energy and yields the second order contribution

K

�2� to the full energy renormalization or the relaxation shift

K of the level �K, viz.


K
�2� = �

Q

�VK,K+Q�2

��K − �K+Q − �Q�
. �23�

The remaining term in the imaginary part on the RHS of Eq.
�20� that exhibits a more complicated t behavior describes
nonlinear phase relaxation of the initial state �K� which pre-
serves a nonsingular behavior of Im C2�K , t� for �= ��K
−�K+Q−�Q�→0. If �VK+Q,K�2 is a slowly varying function of
� the two imaginary terms in Eq. �20� give zero contribution
due to the odd character �parity� of the functions 1/� and
sin��t� /�2. Conversely, the asymmetry with respect to � of
the functions that are summed over Q in expressions on the
RHS of Eq. �20� gives rise to the appearance of a constant
term wK

�2� in the long time limit, as was pointed out in the
preceding section. Hence, the asymptotic form of the propa-
gator �7� up to the second order in cumulant expansion reads

lim
t→�

G2�K,t� = − ie−wK
�2�

exp�− i��K + 
K
�2��t − �K

�2�t���t� .

�24�

From this we find that the asymptotic decay of the initial
particle state as described by G2�K , t� is given by the law

lim
t→�

�G2�K,t��2 = e−2 Re wK
�2�

exp�− 2�K
�2�t���t� . �25�

Therefore, up to the second order in the coupling constant
the total adiabatic decay rate per unit time or the inverse
particle lifetime is given by the Fermi-golden-rule-like form

�−1 = 2�K
�2� = 2��

Q
�VK,K+Q�2���K − �K+Q − �Q� . �26�

This form has been routinely employed in the calculations of
inverse lifetimes of electrons in the bulk and image potential
states at metal surfaces.4 Hence, the present approach
recovers expressions for Fermi’s golden rule �FGR� lifetime
and second order RS level shift already at the level of the
lowest order cumulant, whereas the corrections to them are
contained in the higher order ones. However, as this ap-
proach goes beyond the adiabatic limit, it also identifies the
early time scales at which FGR-like expressions are no
longer valid.

At this point it is instructive to bring expression �20� to
the form which formally resembles the solution of the inde-
pendent boson problem16,17,19 or the forced oscillator
model27,28 which describes a boson field perturbed by an
external suddenly switched on potential. Introducing an ef-
fective boson excitation energy

�K,Q = �K+Q + �Q − �K �27�

and the weighted density of excitations

�K
�2���� = �

Q
�VK,K+Q�2��� − �K,Q� , �28�

we can write

C2�K,t� = −	 d�
�K

�2����
�

�1 − i�t − e−i�t

�

 . �29�

This expression is a general solution of the problem of a
boson field perturbed by external classical time dependent
potential switched on at t=0.17 By taking the long time limit
of expression on the RHS of Eq. �29� we immediately see
that

�K
�2� = ��K

�2��� = 0� , �30�

and 
K
�2� is obtained as the Hilbert transform of �K

�2� �see Ref.
25�. Hence, within the second order cumulant approximation
the problem of transient interaction of a recoiling particle
with a boson field characterized by the excitation energy �Q
can be transformed to the problem of a boson field charac-
terized by the renormalized excitation energy �=�K,Q and
perturbed by a suddenly switched on external perturbation.

At nonzero temperature, Ts�0, the expression for
C2�K , t� comprises two separate components arising from
boson emission and boson annihilation �absorption� pro-
cesses. The emission component at nonzero Ts is obtained by
multiplying the terms in the sums on the RHS of Eq. �20� by
the factor �nQ+1�. On the other hand, the absorption compo-
nent is obtained by multiplying the terms in the sums on the
RHS of Eq. �20� by the factor nQ and changing the sign in
front of �Q in all energy differences. The ensuing expres-
sions for �K, 
K, and �K

�2� are obtained accordingly.

B. Fourth order cumulants

Substitution of Eq. �13� into Eq. �16� gives the following
expression for the direct or Hartee-Fock-like contribution to
the fourth order cumulant at the temperature Ts=0:
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C4
dir�K,t� = �

Q1

�
Q2

	
0

t

dt4	
0

t4

dt3	
0

t3

dt2	
0

t2

dt1
�VK,K+Q1
VK+Q1,K+Q1+Q2

�2

	exp�i��K − �K+Q1
− �Q1

�t4�exp�i��K+Q1
− �K+Q1+Q2

− �Q2
�t3�

	exp�− i��K+Q1
− �K+Q1+Q2

− �Q2
�t2�exp�− i��K − �K+Q1

− �Q1
�t1� − �VK,K+Q1

VK,K+Q2
�2

	exp�i��K − �K+Q1
− �Q1

�t4�exp�i��K − �K+Q2
− �Q2

�t3�exp�− i��K − �K+Q2
− �Q2

�t2�exp�− i��K − �K+Q1
− �Q1

�t1�� .

�31�

Evaluating the time integrals in Eq. �31� we arrive at the expression given by Eq. �A1�. As shown therein, further rearrange-
ment of the various terms and making use of the algebraic identities and properties of the expressions that in the long time limit
tend to � functions, yields

C4
dir�K,t� =��

Q1

�
Q2

�VK,K+Q1
VK+Q1,K+Q1+Q2

�2

	�−
it

��K − �K+Q1
− �Q1

�2��K − �K+Q1+Q2
− �Q1

− �Q2
�

−
exp�i��K − �K+Q1

− �Q1
�t� − 1

��K − �K+Q1
− �Q1

�2��K+Q1
− �K+Q1+Q2

− �Q2
�2

−
1

��K+Q1
− �K+Q1+Q2

− �Q2
�� �

��1
� exp�i�1t� − 1

�1
2 
�

�1=��K−�K+Q1
−�Q1

�

+
exp�i��K − �K+Q1+Q2

− �Q1
− �Q2

�t� − 1

��K+Q1
− �K+Q1+Q2

− �Q2
�2��K − �K+Q1+Q2

− �Q1
− �Q2

�2� − �
Q1

�
Q2

�VK,K+Q1
VK,K+Q2

�2

	�−
it

��K − �K+Q1
− �Q1

�2�2�K − �K+Q1
− �K+Q2

− �Q1
− �Q2

�
−

exp�i��K − �K+Q1
− �Q1

�t� − 1

��K − �K+Q1
− �Q1

�2��K − �K+Q2
− �Q2

�2

−
1

��K − �K+Q2
− �Q2

�� �

��1
� exp�i�1t� − 1

�1
2 
�

�1=��K−�K+Q1
−�Q1

�

+
exp�i�2�K − �K+Q1

− �K+Q2
− �Q1

− �Q2
�t� − 1

��K − �K+Q2
− �Q2

�2�2�K − �K+Q1
− �K+Q2

− �Q1
− �Q2

�2�� . �32�

The origin of the derivatives of the expression �exp�i�1t�−1� /�1
2 appearing in the correlated and uncorrelated terms and their

relation to the results of earlier works30,34 are also discussed in the Appendix.
The exchange contribution to the fourth order cumulant is derived by substituting Eq. �13� into Eq. �17� and reads

C4
xc�K,t� = �

Q1

�
Q2

	
0

t

dt4	
0

t4

dt3	
0

t3

dt2	
0

t2

dt1 	 
VK,K+Q1
VK+Q1,K+Q1+Q2

VK,K+Q2

* VK+Q2,K+Q1+Q2

* 	 exp�i��K − �K+Q2
− �Q2

�t4

+ i��K+Q2
− �K+Q1+Q2

− �Q1
�t3� 	 exp�− i��K+Q1

− �K+Q1+Q2
− �Q2

�t2 − i��K − �K+Q1
− �Q1

�t1�

− �VK,K+Q1
VK,K+Q2

�2 	 exp�i��K − �K+Q2
− �Q2

��t4 − t2� + i��K − �K+Q1
− �Q1

��t3 − t1��� . �33�

Evaluating the time integrals in Eq. �33� we obtain expression �A6� given in the Appendix. Rearrangement of the various terms
in Eq. �A6� leads to the result

C4
xc�K,t� = ��

Q1

�
Q2

VK,K+Q1
VK+Q1,K+Q1+Q2

VK,K+Q2

* VK+Q2,K+Q1+Q2

*

	�−
it

��K − �K+Q1
− �Q1

���K − �K+Q2
− �Q2

���K − �K+Q1+Q2
− �Q1

− �Q2
�

+
exp�i��K − �K+Q1

− �Q1
�t� − 1

��K − �K+Q1
− �Q1

�2��K+Q1
− �K+Q1+Q2

− �Q2
���K+Q1

+ �Q1
− �K+Q2

− �Q2
�
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+
exp�i��K − �K+Q1+Q2

− �Q1
− �Q2

�t� − 1

��K+Q2
− �K+Q1+Q2

− �Q1
���K − �K+Q1+Q2

− �Q1
− �Q2

�2��K+Q1
− �K+Q1+Q2

− �Q2
�

−
exp�i��K − �K+Q2

− �Q2
�t� − 1

��K+Q2
− �K+Q1+Q2

− �Q1
���K − �K+Q2

− �Q2
�2��K+Q1

+ �Q1
− �K+Q2

− �Q2
�� − �

Q1

�
Q2

�VK,K+Q1
VK,K+Q2

�2

	�−
it

��K − �K+Q1
− �Q1

���K − �K+Q2
− �Q2

��2�K − �K+Q1
− �K+Q2

− �Q1
− �Q2

�

+
exp�i��K − �K+Q1

− �Q1
�t� − 1

��K − �K+Q1
− �Q1

�2��K − �K+Q2
− �Q2

���K+Q1
+ �Q1

− �K+Q2
− �Q2

�

+
exp�i�2�K − �K+Q1

− �K+Q2
− �Q1

− �Q2
�t� − 1

��K − �K+Q1
− �Q1

���K − �K+Q2
− �Q2

��2�K − �K+Q1
− �K+Q2

− �Q1
− �Q2

�2

−
exp�i��K − �K+Q2

− �Q2
�t� − 1

��K − �K+Q1
− �Q1

���K − �K+Q2
− �Q2

�2��K+Q1
+ �Q1

− �K+Q2
− �Q2

��� . �34�

Several properties of the expressions derived in this sub-
section require special attention. First, it should be noted
that, despite appearances, both expressions �32� and �34� are,
likewise Eq. �20�, nonsingular when the energy differences
in the brackets in the various denominators approach zero.

Second, the short time limits t→0 of both the correlated
and uncorrelated contributions in C4

dir�K , t� and C4
xc�K , t� be-

have as t4 /4!+O�t5�. From this we find

lim
t→0

C4�K,t� →
t4

4!�Q1

�
Q2

��VK,K+Q1
VK+Q1,K+Q1+Q2

�2 + VK,K+Q1

	VK+Q1,K+Q1+Q2
VK,K+Q2

* VK+Q2,K+Q1+Q2

*

− 2�VK,K+Q1
VK,K+Q2

�2� + O�t5� . �35�

Analogously, we can conclude from definition �10� that in
the limit t→0 we generally have Cn�K , t�� tn+O�tn+1�, and
hence the early time behavior of the sum of cumulants in the
exponent on the RHS of Eq. �9� is governed by the second
order cumulant �21�.

Third, by analyzing the temporal dependence of the sec-
ond and fourth order cumulants we notice that for short times
Re Cn�K , t�� tn whereas Im Cn�K , t�� tn+1. Hence, in both
the uncorrelated and lowest order correlated boson exchange
processes the decay of the quasiparticle state that is de-
scribed by Re Cn�K , t� proceeds faster than the energy and
phase relaxation described by the imaginary part of the same
cumulant. It can easily be seen that analogous conclusion
holds also for the cumulants of the order n�4 that describe
higher order correlated boson excitation processes.

Fourth, the factors which multiply the terms that are pro-
portional to it in expressions �32� and �34� are identified as
contributions to the fourth order correlation correction 
K

�4� to
the total polarization induced shift 
K= �
K

�2�+
K
�4�+ ¯ � of

the bare unrelaxed energy �K of the state �K�. These energy
shifts have the same appearance as the corresponding shifts

obtained from Rayleigh-Schrödinger perturbation theory.
Finally, as in Sec. III A one can demonstrate that it is

possible to express C�K , t�=�nCn�K , t� in a form that is for-
mally equivalent to Eq. �29�, which expresses the second
order cumulant in terms of �K

�2����. To this end we first ob-
serve that from Eqs. �6�, �7�, and �10�, and the long time
limits of irreducible diagrams for the particle propagator,35

we have quite generally Ċ�K , t→��→const and C�K , t

=0�= Ċ�K , t=0�=0. Then, following Ref. 36 we can con-
struct the quantity

�K��� =
1

2�i
	 dt��Ċ�K,t�� − Ċ�K,���ei�t�, �36�

because the expression in the square bracket in the integrand
is bounded �i.e., vanishes� for �t��→�, and is regular for t�
=0. Next, we define the quantity

C̃�K,t� = −	 d�
�K���

�
�1 − i�t − e−i�t

�

 , �37�

and substitute expression �36� into the integrand on the RHS
of Eq. �37� and carry out the integration over �. In perform-
ing the inverse Fourier transform we make use of the integral
representation of the Heaviside step function

��t� =
1

2�i
	 d�

ei�t

�
�38�

and find

C̃�K,t� = C�K,t� . �39�

Hence, C�K , t� is expressible in terms of �K��� in the same
fashion as C2�K , t� is expressible in terms of �K

�2����. An im-
minent implication of this result is that the form of C�K , t�
given by Eq. �37� exhibits the long time behavior that is
qualitatively similar to that of C2�K , t� provided �K��� is
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qualitatively similar to �K
�2����. Here this behavior is gov-

erned by the full 
K, �K, and wK that are obtained from the
full density of excitations �K��� analogously as in Eq. �30�.
The full or renormalized density of excitations has a series
expansion in even powers of the coupling constant �, viz.
�K���=�K

�2����+�K
�4����+¯, in which each term can be calcu-

lated from the corresponding Cn�K , t� by using the defining
expression �36�. It is also seen from expressions �37� and
�39� that truncation of the cumulant series at any order does
not violate the unitarity of the spectrum of the propagator
�7�.

Expression �37� gives a prescription for the representation
of the original cumulant series, that describes interaction dy-
namics of a single particle coupled to a boson field with
unrenormalized energy �Q, by an equivalent problem in
which a renormalized boson field characterized by the
weighted density of states �K��� responds to a suddenly
switched on external perturbation. The latter problem is ex-
actly solved by the second cumulant in the same fashion as is
the independent boson problem19 for which �K���→��0����
=�Q�VQ�2���−�Q�. Hence, the difference �K���−��0����
gives a measure of the total effect of particle recoil on the
dynamics of the system at excitation energy �. Analogously,
the difference �K���−�K

�2���� measures the total effect of
higher order correlated boson excitation processes at the en-
ergy � for which the lowest order correction is given by
C4�K , t�.

C. Generalization to interband transitions and interactions
with electronic excitations

The present approach can be generalized to the case of
interactions that can also give rise to transitions out of the
band l in which the quasiparticle was initially created. In this
case one starts from the diagonal single particle propagator
Gl�K , t� and each intermediate state propagation in the ex-
pressions for cumulants is extended to include the interband
processes l→ l�. The final result is obtained by carrying out
summation over all the intermediate state bands l� involved
in the scattering processes induced by the interaction V. The
above discussed contributions arising from intraband transi-
tions are those for which l= l�.

Further generalization of the model pertains to the quasi-
particle interactions with electronic excitations in the system
provided the latter can be to a good approximation treated
within the linear response formalism and represented by the
dynamically screened retarded Coulomb interaction.4,37,38

Since the electronic excitations in a solid form a continuum
in the momentum and energy space �i.e., there is no disper-
sion relation that connects the wave vector Q with the energy
� of incoherent electronic excitation modes� the summations
over the intermediate states occurring in the cumulants
Cn�K , t� must be extended to range over the whole �Q ,��
continuum. As the standard treatment of the decay of quasi-
particles in surface bands is based on the G0W
approximation4 we shall illustrate how this approximation
can be directly mapped to the present quasiparticle-boson
model.

The self-energy �l�K� of the electron in the lth band,
arising from the electron coupling to the electronic charge
density fluctuations of the substrate, is in the G0W approxi-
mation calculated from the diagram shown in Fig. 2�a�. This
gives39

�l�K� =	 dz	 dz��l�z���z,z�,K,�K,l��l�z�� , �40�

where �K,l=El+K2 /2ml is the initial electron energy in the
lth band. By introducing the substrate electronic response
function � this expression can be written as

�l�K� = �
Q

�
l�
	 dz	 dz�	 dz1	 dz2

	 �l�z��l��z�V�z1,z,Q���z1,z2,K,�l,l��

	V�z2,z�,Q��l��z���l�z�� , �41�

where

�l,l� = �K,l − �K−Q,l� = El +
K2

2ml
− El� −

�K − Q�2

2ml�
�42�

and

V�z,z1,Q� = VQe−Q�z−z1�, �43�

with

FIG. 2. �Color online� �a� Diagram for the second order self-
energy in the G0W approximation, Eq. �40�, of an electron propa-
gating in band l with initial energy �=�K,l. Full line denotes the
electron propagator, wavy lines the unscreened Coulomb interac-
tion, and the bubble denotes the screened electronic response func-
tion of the system. �b� Equivalent diagram in the electron-boson
interaction model outlined in Sec. II. Shaded circles and the dash-
dotted line denote the matrix element VQ and the boson propagator
Wl,l� of Eqs. �44� and �48�, respectively.
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VQ =
2�e

Q
, �44�

where e is the electron charge. Introducing the generalized
oscillator strengths

f l�,l�Q,z1� =	 dz�l��z�e−Q�z−z1��l�z� , �45�

we can write �l in the form

�l�K� = 
K,l − i�K,l = �
Q

�VQ�2�
l�
	 d�

2�i
G0

l��K − Q,�K,l

− ��Wl�,l�Q,�� . �46�

Here the single electron �retarded� Green’s function in the
l�th band is given by

G0
l��K,�� =

1

� − �K,l� + i�
, �47�

and the screened interaction is represented by a boson field
propagator

Wl�,l�Q,�� = 	
0

�

d��Sl�,l�Q,���� 1

� − �� + i�
−

1

� + �� − i�

 ,

�48�

with the density of the bosonized substrate electronic excita-
tions in the �Q ,��� phase space defined by

Sl�,l�Q,��� =	 dz1	 dz2f l�,l�z1,Q�

	�−
1

�
Im ��z1,z2,Q,���� f l,l��z2,Q� . �49�

The corresponding boson field propagator in the time repre-
sentation, Wl�,l�Q , t�, is obtained by taking the Fourier trans-
form of expression �48�. In the case of intraband transitions
only we have l= l�, and if the substrate response exhibits only
collective excitations with a well defined mode dispersion
�=�Q we have

Sl�,l�Q,��� � ���� − �Q��l�,l, �50�

which restores expressions �20�–�34�.
Expression �46� has the appearance of the second order

selfenergy that can be represented by the diagram shown in
Fig. 2�b�. This diagram describes a quasiparticle whose
propagation in a 2D band l is subject to intraband and
interband transitions caused by the excitations of an effective
2D boson field represented by the propagator Wl�,l�Q ,��.
The same diagram calculated in the time representation
would be equivalent to expression for the second order cu-
mulant �see Fig. 1�a�� upon replacing �VK,K+Q�2DQ�t� by

�VQ�2Wl�,l�−Q , t� and �Q by �Q,l�. Hence, expression �48�
and Fig. 2 enable us to establish a one-to-one correspon-
dence or mapping between the image potential band model
in the G0W approximation39 and an equivalent electron-
boson model once the substrate density of excitations �49� is

known and available. This mapping shows that the expres-
sion for the second order cumulant �20� is calculated at the
level that in the adiabatic limit corresponds to G0W approxi-
mation, and that by exponentiation of C2�K , t�, which brings
in all the powers of uncorrelated selfenergy and vertex cor-
rection, the propagator G2�K , t� is obtained at the level cor-
responding to uncorrelated GW� approximation �here � de-
notes the vertex function5,40–42�. Analogously, the propagator
G4�K , t�=G0�K , t�exp�C2�K , t�+C4�K , t�� describes electron
propagation in which the interaction with bosons is treated at
the level corresponding to correlated GW� approximation
with correlations included up to the fourth order in the cou-
pling constant �see Ref. 18�. However, the present approach
clearly identifies the time scales at which the adiabatic GW�
approaches are no longer valid in the description of ultrafast
phenomena �see next section�.

In the systems with a discrete spectrum for motion in the
third limited spatial dimension Lz, like the quantum well
bands, the extension of Lz causes a transition of the discrete
set of quantum state numbers l into a quasicontinuum, and
eventually into a continuum if Lz becomes comparable with
the other two dimensions. In this limit of translational invari-
ance or periodic boundary conditions in all three dimensions
the quasiparticle wave vector in the direction Lz takes the
role of the quantum number l, i.e., �K , l�→ �K ,kz�=k, where
k is a three-dimensional wave vector. The same applies to
the quantum numbers describing the excitations of the heat-
bath and thereby to the matrix elements of the interaction V.
In this case the formulation of the problem reduces to a 3D
situation discussed in Ref. 18. However, by comparing the
structures of the cumulant series in the latter reference and
the present work it is seen that its convergence under the
same coupling conditions and correlations between succes-
sive quasiparticle interactions with bosons remains un-
changed.

IV. GUIDELINES FOR THE USE
OF THE DEVELOPED FORMALISM

IN THE STUDIES OF ULTRAFAST DYNAMICS

Theoretical studies of the dynamics of particles that are
adiabatically brought in interaction with a bosonized field of
excitations of a solid have been routinely carried out within
the various versions of the GW approximation.5 Underlying
the GW approximation is the assumption of adiabatic switch-
ing on of the particle-field interaction and this proviso effec-
tively eliminates the appearance of transient effects in the
early temporal evolution of the system after the switching on
of the particle-boson interaction. In the steady state experi-
ments which measure only the long time response of the
investigated systems the transient effects are of little impor-
tance and the results for the various physical quantities of
interest are usually derived directly in the �-representation
by making use of the translational invariance in time that
holds in the adiabatic limit. Thus, the lifetime that describes
asymptotic exponential decay of the quasiparticle in a steady
state regime is accessible and usually calculated in the GW
approximation, which at the lowest level of approximation
acquires the form of Fermi’s golden rule.
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However, theoretical descriptions of quasiparticle evolu-
tion in experiments that probe the system dynamics on ul-
trashort time scales, as is the case in time resolved 2PPE,
must take into account the transient response of the system to
the sudden switching on of the interactions. The transient
response affects the quasiparticle propagators that are the
basic ingredients needed in the calculation and interpretation
of the results of various time resolved measurements. There-
fore such calculations cannot be based on the adiabatic
assumption.6 Only in the limit of long times the quasiparticle
propagators including transients and those calculated by us-
ing adiabatic assumption asymptotically tend to the same
result. Hence, the assessment of the range of validity of the
picture of quasiparticle evolution solely in terms of exponen-
tial decay requires different approaches.

The formalism developed in Secs. II and III establishes a
method for studying the evolution of quasiparticles during
the entire duration of interaction with a bosonized field that
is switched on with the particle injection into the system.
Thereby it provides important corrections to the adiabatic
results obtainable in the GW approximation. The method,
based on cumulant expansion, is systematic but its imple-
mentation may become tedious if the convergence of cumu-
lant series �9� is slow. Hence, the method proves useful if the
contributions from higher order cumulants make a small cor-
rection to the fundamental second order contribution to the
series �9�.

As has been pointed out in Ref. 19, there is generally no
universal criterion for the smallness of higher order cumu-
lants except that higher order correlation processes described
by them be small. Their exact magnitude is system �model�
specific and can be calculated to all orders only in special
cases, effectively only in the long time limit43 which is not of
primary interest in the studies of ultrafast dynamics. How-
ever, one can estimate the relative contributions from the
second and fourth order cumulants for some characteristic
model systems and then meaningfully extrapolate and gener-
alize these findings to the systems that exhibit similar char-
acteristics like the effective masses of particles, coupling
strengths and interaction matrix elements, dispersions and
bandwidths of bosonic excitations, cutoffs in the energy ex-
change and the quasiparticle recoil energies in the integration
intervals, etc. Such an extrapolation is possible because the
vanishing of the energy denominators in the expressions for
cumulants does not introduce any singular behavior in the
integrands of final expressions �see Sec. III�. Therefore the
magnitudes of the latter are controlled by the parameters
quoted above and the range of integrations, provided the
products of the form �VQ�2dDQ in the D-dimensional phase
space for scattering do not introduce singularities �which is
not the case for the here discussed electron-surface interac-
tions�. This enables us to generalize on the relative contribu-
tions of the second and fourth order cumulants for other sys-
tems characterized by the parameters of similar magnitude
and then, by the basic theorems on cumulants, also on higher
order corrections. Hence, if the corrections coming from the
fourth order cumulants are small, one can safely deduce the
temporal evolution of quasiparticles from an approximate
form of the corresponding propagator expressed only in
terms of the second order cumulant. Such a program was

carried out in Ref. 18 in the calculations of polaron spectral
densities. The results of that work demonstrate that for the
magnitudes of parameters characteristic of the intermediate
electron-optical phonon coupling strengths the representation
of the cumulant series by its first nonvanishing term makes
an excellent approximation in the calculation of the electron
propagator. By the same token, analogous argument holds
also for electron interaction with acoustic phonons provided
their maximum frequency is of the same order of magnitude
as of the optical ones.

The use of femtosecond laser spectroscopies in the inves-
tigations of the electronic properties of surfaces makes it
highly desirable to also establish a description of the inter-
actions between electrons in the bands of image potential
with the electronic response of the substrate. This generali-
zation may enable a rather straightforward assessment of ul-
trafast electron dynamics in the course of the various spec-
troscopic measurements, and thereby also of the range of
applicability of the lifetime approach based on the GW ap-
proximation used so far in the interpretation of the data. In
other words, the question is posed as how successfully the
above developed formalism can be employed to gain infor-
mation on the early evolution of electrons promoted into
unoccupied surface bands in the course of time-resolved ex-
periments.

In discussing the applicability of the developed formalism
to ultrafast processes we first observe that the situation con-
cerning the magnitudes of higher order correlations embod-
ied in the series �9� becomes simpler and more universal in
the early evolution of the interacting system because for
short times the higher order processes as well as the correla-
tions among them are generally smaller than in the long time
limit �for illustration of this feature see inset in Fig. 1 of
Ref. 6�. Specifically, this occurs in the interval for which
t���−1 where � is a measure of the variation of the various

energy arguments �̃K,Q in the various time dependent expo-

nentials of the form exp�i�̃K,Qt� appearing in the expressions
for cumulants �20�, �32�, and �34�. On noting that 1 au
=658 meV	 fs, the upper bound of � may be determined
either by the bandwidths of the various energies appearing in

�̃K,Q or by the cutoffs contained in the interaction matrix
elements. Thus, for electrons promoted into the image poten-
tial bands on metals in which the electron density centroids Z
are localized several atomic units away from the physical
surface, the magnitude of � will be dominantly determined
by the effective cutoff Z−1 for the magnitude of Q imposed
by the interaction matrix elements VK,K+Q rather than by the
widths of IP-bands or of the spectrum of surface electronic
excitations S�Q ,���. To illustrate these general features we
apply the developed formalism to a model system that is
characterized by the parameters typical of real systems but is
simple enough to allow straightforward solutions from which
direct conclusions on the ultrafast dynamics can be drawn.
Following the arguments presented above such solutions
should embody the most salient features of ultrafast dynam-
ics and relaxation typical also of the more complicated sys-
tems provided they are described by the similar sets of pa-
rameters. This makes it possible to extend the validity of the
obtained conclusions to such systems as well.
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Since the main difficulty in evaluating the complex ex-
pressions �32� and �34� arises in connection with the repeated
implementation of the boson field excitation spectrum and
the resulting multidimensional Q integrations, we shall focus
on the example of a particle moving in a one-dimensional
�1D� band and coupled to a 1D boson field with dispersion
representative of electronic excitations in the system of
equivalent dimensionality. This restriction is not essential in
the sense of the features it may introduce as long as the
bandwidths, electron and boson dispersions, couplings, etc.,
depend on the parameters whose magnitudes and character-
istics are typical of real 2D or 3D systems. Quasi-1D elec-
tronic band states may arise on some reconstructed surfaces44

and the same structure may also support vibrational or elec-
tronic excitations of equivalent dimensionality. Bosonized
electronic density excitations in 1D are tomonagons,8,45 and
to bear relation to surface problems we shall assume that the
1D quasiparticle band and the band supporting boson excita-
tions are separated by a distance Z.

We adopt a standard tomonagon model46 in which the
tomonagon dispersion is given by

�Q = ��p
2 + vF

2Q2, �51�

where Q denotes the 1D wave vector of tomonagons, �p is
the plasmon frequency characteristic of the electron gas that
exhibits tomonagon excitations, and vF=kF /me is the Fermi
velocity in the gas. The form of dispersion given by Eq. �51�
is particularly instructive as it combines the properties of a
coherent or collective excitation �i.e., plasmon� and incoher-
ent electron-hole pair excitations. Plasmons are dominant
component in the excitation spectrum for �p
vFQ, whereas
incoherent single pair excitations are dominant for �p
�vFQ. Note that in this model the boson excitation threshold
appears at the energy �p, whereas in systems of higher di-
mensions there is no threshold for incoherent electronic ex-
citations, i.e., they start from zero energy. However, by put-
ting vF=0 or �p=0 we can separately study the effects of the
heath bath constituted either of collective or incoherent elec-
tronic excitations, respectively.

The matrix element of the Coulomb interaction between
the electron and the tomonagons in the bands at distance Z
apart is taken in the form

VK+Q,K = VQ =���Q

2Z
e−QZ, �52�

which is in close analogy with the matrix elements that
couple the surface electronic excitations with electrons in 2D
bands centered at distance Z outside the surface26 �note in
passing that the pre-exponential factor of 1D coupling matrix
elements �52� falls off with �Z rather than with �Q as in the
2D case but since the effective cutoff arises from the expo-
nential factor this will be of minor importance�. We also
assume quadratic dispersion of the electron energy �K
=K2 /2m* where m* is the effective electron mass in the 1D
band. To retain the connection with the realistic surface prob-
lems we fix m*, vF, and Z so as to correspond to the param-
eters typical of electron propagation in IP bands on Cu�111�
surface. Thus, we put �all values in atomic units�: m*=1,

vF=0.738, kF=0.738, and Z=6.5 �3.4 Å�, and the electron
wave vector K will be measured in the units of kF. However,
for �p we shall not take the theoretical free electron value of
�11 eV but rather the more relevant energy of �4.6 eV at
which the long wavelength limit of the surface excitation
spectrum of Cu exhibits the steepest ascent due to the onset
of d-sp interband transitions �see Fig. 1 of Ref. 47�.

In the present case of electron coupling to tomonagons we
generally encounter two distinct physical situations depend-
ing on the initial conditions: �i� the magnitude of the electron
initial wave vector K is such that the energy differences in
the integrands of C2�K , t� and C4�K , t� do not vanish as Q
ranges over the integration interval, i.e., that �K���=0 below
some threshold energy �K �off-the-energy-shell processes�,
and �ii� the magnitude of K is such that at least one of the
energy differences vanishes so as that �K�0��0 �on-the-
energy-shell processes�. In the former case the moduli of the
real parts of C2�K , t� and C4�K , t� are upper bounded,
whereas in the latter case they contain terms whose moduli
grow with t in the long time limit and hence describe the
decay of the initial state �K�. As, by contrast, the imaginary
parts of C2�K , t� and C4�K , t� contain the terms linear in t
irrespective of the magnitude of K, and which cancel out in
the initial state survival probability �G�K , t��2, it is of primary
interest to study the behavior of the real parts of C2�K , t� and
C4�K , t� as the initial K is varied.

In Fig. 3 we show the behavior of Re�C2�K , t�+C4�K , t��
and Re C2�K , t� as a function of t for �K�=0.5kF which gives
rise to “off-the-energy-shell” arguments in the various time
dependent expressions of the type �A5� present in the inte-

FIG. 3. �Color online� Temporal behavior of the real expression
Re�C2�K , t�+C4�K , t�� for initial electron wave vector �K�=0.5kF

�full line�. The difference between Re�C2�K , t�+C4�K , t�� and
Re C2�K , t� is indistinguishable on the present energy scale. Hori-
zontal dashed-dotted line denotes the corresponding asymptotic
value given by the real part of the Debye-Waller exponent. Inset
shows the difference between Re�C2�K , t�+C4�K , t�� �full line� and
Re C2�K , t� �dashed line� on a magnified scale around the maximum
at t=3.788 fs.
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grands of C2�K , t� and C4�K , t� �subthreshold regime
K2 /2m*��K for real tomonagon emission�. The resulting
function Re�C2�K , t�+C4�K , t�� starts quadratically from zero
but already in the first femtosecond develops oscillation with
threshold frequency �K and in the course of time tends to the
asymptotic value given by the Debye-Waller exponent
−Re wK=−Re�wK

�2�+wK
�4��. The attenuation of the oscillation

amplitude appears due to the Q dependence of the arguments
of exponential functions in the integrands of C2�K , t� and
C4�K , t�. This Q dependence arises from a combination of
electron recoil and boson dispersion and in the absence of
both the oscillations would proceed unattenuated around the
average value −Re wK. The asymptotic value −Re wK�0 for
t→� signifies a finite survival probability of the quasiparti-
cle initial state which in this regime is equal to the Debye-
Waller factor26

PK
0 �t → �� = exp�− 2 Re wK� � 1. �53�

This evolution regime is often referred to as a pure
dephasing.10

With the above values of interaction parameters and initial
conditions, the correlations embodied in C4

dir�K , t� and
C4

xc�K , t� are of the same order of magnitude and induce very
small corrections to the basic uncorrelated transition prob-
abilities obtained from C2�K , t� �see inset in Fig. 3�. Invoking
some basic theorems on cumulants14 it also follows that un-
der the studied conditions the correlation contributions from
higher order cumulants are even smaller �see discussion at
the end of the section�. Therefore, in this case G2�K , t� rep-
resents a very accurate approximation to the exact G�K , t�. It
can be easily verified by varying the parameters of the sys-
tem that such small correlation effects are a general feature
in the subthreshold regime and that this does not change
appreciably with the strength of coupling and the magnitude
of K as long as the off-the-energy-shell character of the bo-
son excitation processes is retained. This means that the ul-
trafast dynamics of quasiparticles in the off-the-energy-shell
regime is very accurately represented by the second order
cumulant, i.e., that in this regime the series in expression �9�
can be terminated after the first nonvanishing term.

The relaxation dynamics is radically different if the mag-
nitude of initial particle wavevector K is large enough that
the energy differences in the integrands of C2�K , t� and
C4�K , t� may go through zero for certain values of Q’s from
the integration intervals. Integrations over these Q values
pick up the “on-the-energy-shell” transitions which in the
long time limit give rise to a linear t dependence of
Re C2�K , t� and Re C4�K , t�. Such asymptotic behavior leads
to the exponential decay of the initial quasiparticle state �K�
that is also retrieved from the adiabatic GW approach. This
situation is illustrated in Fig. 4, which shows Re�C2�K , t�
+C4�K , t�� and Re C2�K , t� for �K�=1.6kF. The early qua-
dratic behavior for t�0.1 fs, which comes solely from
Re C2�K , t�, is followed by a non-Markovian oscillatory dec-
rement that continues up to 2 fs, after which the oscillations
level off. The linear asymptotic behavior −�Kt, with a small
offset equal to −Re wK, is reached already in the first 5 fs of

the quasiparticle evolution. Beyond that interval the survival
probability or the decay of the initial state is described by the
exponential law

�G�K,t � �K
−1��2 = exp�− 2 Re wK�exp�− 2�Kt� . �54�

Note here in passing that the present �K=�K
�2�+�K

�4�

=94 meV is of the same order of magnitude as found for
electrons propagating in the image potential bands on metal
surfaces.4 This signifies that, as regards the quasiparticle dy-
namics, the thus parameterized tomonagon model bears rel-
evance to the problem of quasiparticle propagation in surface
localized bands. It should also be observed that in the case of
zero energy excitation threshold �p=0 only the evolution of
the type depicted in Fig. 4 can take place. This describes the
situation of a quasiparticle interacting with a continuum of
incoherent electron-hole pair excitations with wave vector Q
and corresponding energy ��Q. In this case the qualitative
behavior of Re C2�K , t� shown in Fig. 4 persists for small
K’s as well, with the only exception of the initial state with
K=0 in which the particle starts to propagate from the band
bottom and therefore cannot further recoil downward on the
energy scale. In this situation the energy differences in ex-
pressions for C2�0, t� and C4�0, t� are �Q and in the long
time limit this produces a logarithmic asymptotic behavior of
the real part of the cumulant sum �ln�t� rather than linear.
Consequently, the decay of the amplitude of G�K=0, t� then
follows a power law behavior. This situation is known from
the studies of threshold singularities in the x-ray spectra of
deep core levels in metals.15 Most importantly, by diminish-
ing the initial K, i.e., by lowering the phase space for quasi-
particle recoil in on-the-energy-shell processes, the correla-
tions among higher order processes also diminish and the
description of the quasiparticle ultrafast dynamics in terms of
the second order cumulant becomes more accurate.

The results presented in Figs. 3 and 4 convey an impor-
tant general message that throughout the interaction interval

FIG. 4. �Color online� Temporal behavior of the real expression
Re�C2�K , t�+C4�K , t�� �full line� and Re C2�K , t� �dashed line� for
initial electron wave vector �K � =1.6kF. For t�1 fs the two curves
are indistinguishable on the present energy scale. The regime of
linear behavior �−�Kt is governed by �K=94 meV.
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�0, t� the correlation correction Re C4�K , t� makes a very
small contribution to the fundamental uncorrelated processes
described by the second order cumulant Re C2�K , t�. For the
present system Re C4�K , t� gives rise to a 2.8% correction to
Re C2�K , t� in the regime of linear t behavior of Re C�K , t�
shown in Fig. 4, and much less in the subthreshold regime in
Fig. 3. In the absence of the boson excitation threshold that is
typical of the surface electronic response in systems beyond
1D, the correlations are found to be small for all values of K.

Although weak correlations in ultrafast quasiparticle dy-
namics have been here illustrated only on a simple model
system, the implications of these findings are far more gen-
eral. Due to the nonsingular character of integrands in ex-
pressions �20�, �32�, and �34�, the magnitude of correlation
effects is generally very small for the discussed magnitudes
of the system parameters. This conclusion can be also ex-
tended to systems of higher dimensions because in the
present problem the cumulants of all orders acquire the same
general form �see Eqs. �29� and �37�� and the results of in-
tegrations are rather insensitive to the dimensionality of the
problem as long as the boson excitation spectrum, the
strength of the interaction matrix elements, and the integra-
tion boundaries remain similar. Moreover, successive inte-
grations in higher dimensions tend to smear out the varia-
tions of the integrands and therefore relax the correlations.50

This leads to a general conclusion that for a broad range of
initial conditions and the set of parameters whose magni-
tudes are close to the ones used here and corresponding to IP
electrons on Cu�111� surface, the description of the dynamics
of electrons in the image potential bands is reliably repre-
sented by the approximate form of the propagator �7� ex-
pressed in terms of the second order cumulant only, viz.
G�K , t�=G0�K , t�exp�C2�K , t�� with C2�K , t� given by Eq.
�20�. This is a very advantageous property since the second
order cumulant expansion is simple enough to be easily
implemented, which then enables accurate calculations of the
ultrafast quasiparticle dynamics and corrections to the
asymptotic GW approximation expressions at the �numerical�
cost that does not exceed much the one required in standard
GW approximation calculations of selfenergies �see discus-
sion following Eq. �50��. Analogous conclusions apply to
other systems described by the parameters of similar magni-
tude and subject to equivalent initial conditions. These find-
ings represent the main result of the present work and point
to the perspective use of the developed formalism in the
descriptions of ultrafast electron dynamics at surfaces. In
particular, the knowledge of the early evolution of quasipar-
ticle propagators �4� is an essential prerequisite for calcula-
tions of the time resolved 2PPE and SHG yields in the limit
of short pump-probe delays.7

The same formalism and analysis can be extended to treat
ultrafast dynamics of holes because the solutions of the elec-
tron and hole problems are related by time reversal. The
condition is that the holes are excited sufficiently below the
Fermi level of the system so that the exchange effects involv-
ing these holes and the holes excited close to the Fermi level
can be neglected.48 The various aspects of the hole problem
have been studied much more extensively in the literature.
This particularly applies to the spectra of holes in core levels

of metals whose exact asymptotic solutions in the limit of
infinite effective hole mass and lifetime15,17,19 have been em-
ployed to interpret the data of x-ray core level
photoemission.51–53 The problem of hole diffusion in the case
of finite hole mass has been treated only asymptotically,54,55

or up to the second order in cumulant expansion.25,48 Only
recently, a formal exact numerical solution of ultrafast hole
dynamics encompassing hole migration across the discrete
levels of finite systems �atoms, molecules� has been
developed,56 and our results from Fig. 3 when depicted as
exp�2 Re CK�t�� exhibit a behavior qualitatively similar to
that reported in Fig. 1 of Ref. 56.

V. CONCLUSIONS

The understanding of the early evolution and decoherence
of electrons excited into the unoccupied states of surface
localized bands is of fundamental importance for interpreta-
tion of the results of time resolved electron spectroscopies.
We have described the approach in which information on the
temporal evolution and ultrafast dynamics of an electron that
is suddenly promoted into an unoccupied band, where its
motion is coupled to the excitations of the system, are ob-
tained from the corresponding quasiparticle propagator cal-
culated in the real time domain without invoking the adia-
batic assumption. Such propagators, which serve as basic
inputs in the theoretical descriptions of time resolved experi-
ments, cannot be calculated by resorting to the various ver-
sions of GW approximations in energy domain that yield the
quasiparticle selfenergies subject to adiabatic boundary con-
ditions. A development of the formalism that enables calcu-
lations of the required renormalized propagators is described
in Secs. II and III. We have shown that the renormalization
of propagators appears in a multiplicative form as an expo-
nential function whose argument is equal to the sum of an
infinite series of cumulants generated by the successive qua-
siparticle interactions with the heat bath. In this approach the
processes described by higher order cumulants �in powers of
the coupling constant� appear as correlation corrections to
the processes described by lower order cumulants, whereby
higher order correlations are smaller in magnitude than the
lower order ones.14 The early, intermediate, and long time
behaviour of the quasiparticle propagator can in this ap-
proach be directly deduced from the general form of the
cumulant sum given by expression �37�.

The main merit of using the developed approach, besides
the advantage of obtaining the results directly in the real time
domain, lies in the fast convergence of cumulant series in the
case of weak correlations between successive scattering pro-
cesses. In the model of a particle interaction with bosonized
excitations of the heatbath outlined in Sec. II the fundamen-
tal uncorrelated scattering process is described by the second
order cumulant C2�K , t� and all higher cumulants describe
only correlation corrections to sequences of such processes.
In Sec. IV we have illustrated these features for a 1D system
by evaluating the fundamental term C2�K , t� and the leading
correlation corrections that are given by the fourth order
cumulant C4�K , t�. By comparing the magnitudes of their real
parts that describe relevant inelastic and decoherence pro-
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cesses we find that the correlation corrections amount to few
percent only. Combining this finding with the analysis of the
structure and properties of cumulants of all orders, which are
shown to exhibit the same general form, we argue that such
a result is not restricted by the model employed for its dem-
onstration but represents a general feature of all systems de-
scribed by equivalent parameters and initial conditions.
Hence, a representation of the quasiparticle propagator only
in terms of the second order cumulant generally represents a
very reliable approximation. This is also in accord with the
various earlier calculations of the transition probabilities
based on cumulant expansion.9,18,20,24,27,49,50

One of the important inferences of the results derived in
the preceding sections, which is also interesting in its own
right, concerns the importance of the roles of selfenergy vs.
vertex corrections that are commonly discussed in the con-
text of self-consistency of the approximations applied to the
ordinary Feynman-Dyson perturbation expansion for G���
that is based on the adiabatic assumption. In the cumulant
representation �7� each multiplicative factor exp�Cn�t�� con-
tains a class of the selfenergy and vertex corrections to all
orders in the coupling constant that are treated on equivalent
footing. Thus, G2�t�=G0�t�exp�C2�t�� may be said to be
equivalent to G�t� calculated in the “uncorrelated GW� ap-
proximation” where “correlated” means statistically or
probabilistically linked.14 This explains why in many cir-
cumstances G2�t� already provides a good approximation to
the exact G�t�. Analogously, G4�t�=G0�t�exp�C2�t�+C4�t�� is
equivalent to G�t� calculated in the “correlated GW� ap-

proximation” that encompasses second order correlations in
all higher order �in the powers of coupling constant� scatter-
ing processes. Hence, in the absence of strongly correlated
scattering processes G4�t� will be only little different from
G2�t�, as was indeed found for the system discussed in
Sec. IV.

The assessment of the results of this work and a compari-
son with the earlier ones9,18,20,24,27,49,50 indicates a strong po-
tentiality of the formalism developed in Secs. II and III for
the studies of ultrafast dynamics and decoherence of quasi-
particles coupled to a heatbath of the system. We have dem-
onstrated by using general arguments that for a class of sys-
tems described by the parameters typical of image potential
bands on metal surfaces this can be done by resorting to the
second order cumulant expansion which is relatively easy to
implement to real systems once the excitation spectrum char-
acteristic of the heatbath is known and available.4 This es-
tablishes the developed formalism as a powerful practical
method for studying ultrafast electron dynamics at surfaces.
Concrete applications of the formalism to the studies of qua-
siparticle dynamics affects the 2PPE yield from surface
bands of real metals will be the subject of a forthcoming
work.
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APPENDIX: EVALUATION OF THE FOURTH ORDER CUMULANTS

Straightforward evaluation of the time integrals in Eq. �31� gives the direct or Hartree-Fock contribution to the fourth order
cumulant in the form

C4
dir�K,t� = − ��

Q1

�
Q2

�VK,K+Q1
VK+Q1,K+Q1+Q2

�2

	� it

��K − �K+Q1
− �Q1
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�
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Here the term

it exp�i��K − �K+Q1
− �Q1

�t�

��K − �K+Q1
− �Q1

�2��K+Q1
− �K+Q1+Q2

− �Q2
�

, �A2�

in the correlated part of C4
dir, and an analogous term in the

uncorrelated part

it exp�i��K − �K+Q1
− �Q1

�t�

��K − �K+Q1
− �Q1

�2��K − �K+Q2
− �Q2

�
, �A3�

arise from the polarization of the intermediate state subse-
quent to emission of the first boson of wave vector −Q1 and
frequency �Q1

. In Eq. �16� this is the state in which the
electron at instant t1 starts propagating with the wave vector
K+Q1. This intermediate state is then polarized through a
virtual emission of the second boson of wave vector −Q2 and
frequency �Q2

at instant t2 and its reabsorption at instant t3

�see Fig. 1�b��. Such a diagonal process in the internal inter-
val �t2 , t3� that returns the system into the same former inter-
mediate state gives rise to a factor that is proportional to the
duration of the interval the electron can propagate in the
intermediate state �the interval �t1 , t4� in Eq. �16� and Fig.
1�b��. Final integration over t4 over the entire propagation
interval �0, t� then yields expressions �A2� and �A3�. Thereby
the internal diagonal processes contribute to the self-energy
corrections of the intermediate state. The occurrence of such
terms is expected as the analogous ones were also obtained
in the fourth cumulant of the particle propagator correspond-

ing to a two level system coupled to an Einstein oscillator,34

and in polaron theory in the calculations of the fourth order
Hartree-Fock self energy carried out in �k ,��
representation.30 In this representation such processes give
rise to derivatives of the energy conserving � functions in the
integral representations of self-energies �see Eq. �24� of Ref.
30�. Here we can formally retrieve it in the long time limit by
making use of the identity

it exp�i�1t�
�1

2�2
=

1

�2

�

��1

�exp�i�1t� − 1�
�1

2 +
2�exp�i�1t� − 1�

�1
3�2

,

�A4�

in which the asymptotic properties of the first term on the
RHS of �A4� can be represented by a derivative of a � func-
tion provided the limit t→� is taken prior to the differentia-
tion with respect to �1 and integration over Q1 and Q2, i.e.,
if we set

lim
t→�

1 − exp�i�1t�
�1

2 = ����1��t −
i

�1

 . �A5�

Then, after substitution of Eq. �A4� into Eq. �A1� and the
rearrangement of the various terms we finally obtain expres-
sion �32�. Again, as in expression �20�, the last term on the
RHS of Eq. �A5� may give a finite or zero contribution de-
pending on whether the remaining factor is an even or odd
function of �1, respectively.

In the same fashion, evaluation of the time integrals in Eq.
�33� yields the exchange contribution in the form

C4
xc�K,t� = − ��

Q1

�
Q2

VK,K+Q1
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* VK+Q2,K+Q1+Q2

*
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Note that in contrast to Eq. �A1�, there are no internal diag-
onal terms appearing C4

xc�K , t�. This is due to the fact that in
the exchange contribution the electron propagation in the
intermediate states is characterized by off-diagonal processes

that give rise to correlated vertex corrections rather than the
self-energy corrections to the basic process described by
C2�K , t�. Rearrangement of the terms in the large square
brackets in Eq. �A6� then leads to expression �34�.
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